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Abstract:

An understanding of geologic structures and fracture networks aids the understanding of fracture-controlled flow at a
variety of spatial scales, as demonstrated by case studies from throughout the western United States. These studies
were undertaken to understand the role of fractures during mineral formation and their effect on water quality associated
with mineralization. Studies in the Patagonia Mountains of southern Arizona demonstrate the control of ground water -
surface water interactions along discrete fractures, as detected by changes in surface water chemical and physical
properties. Surface water entered the ground as a stream intersected a major fracture zone and re-emerged several
hundred meters downstream, where it mixed with water draining an abandoned mine. Chemical parameters and
temperature provided a clear indication of the presence of the re-emergent ground water. At Battle Mountain, Nevada,
changes in surface-water flow are attributable to ground-water discharge and recharge that occurs in locations where
large-scale (10°s of km) through-going fractures cross a stream drainage. In the Osgood Mountains in north-central
Nevada, interactions between ground water and surface water are controlled by fracture systems at spatial scales from
meters to kilometers, as confirmed by hydraulic head measurements and geochemical samples. A final case study on Mt.
Emmons in southwest Colorado was performed to discern local flow phenomena within a fault duplex that formed in the
Tertiary, but whose fracture sets are still hydraulically conductive. The main strike-slip faults of the duplex extend for
several kilometers and are about 1.5 km apart. Local flow regimes are established at the scale of tens of meters within this

system, and are observed by chemically dissimilar springs within meters of each other, mixing of dissimilar waters from

adjacent stream drainages, etc. The results of these studies are being used to help evaluate the environmental effects of
Wild rye on Battle Mountain, Nevada

mineral deposits throughout the U.S.
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This photograph demonstrates that not all
fractures are hydraulically conductive at
the sub-meter scale. The question remains
as to whether we can explain, using geologic
models, which fracture orientations should
be preferentially conductive.

The Osgood Mountains study
area is in north-central Nevada.
Specific sites of interest are
shown in magenta letters on the
map below, and correspond to

the boxes at right.
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During one sampling trip in 1999, we observed a
dramatic increase in the discharge of Osgood Creek as
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left (Wanty and Winter, beneath the stream between '
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the observed increases in concentrations of individual dissolved constituents. The stream disappears
again at point b, at a location that coincides with the projected subcrop of a swarm of fractures
observed in the outcrop at point c. The vectors originating at point ¢ show the orientations of
observed fractures in the outcrop. These fractures are likely to be hydraulically conductive, as
suggested by the presence of a species of wild rye, which requires more moisture than is normally
available in this arid region. The photograph at the top right of this poster shows the outcrop, with
the wild rye visible in the foreground. The decrease in conductivity in Elder Gulch from south (310 us)
to north (270 us) is evidence of the hydraulic conductivity of the fractures, as the more dilute water
from the unnamed drainage enters Elder Gulch.

Four areas in the western US

were chosen to represent

hydrogeologic systems at a

variety of spatial scales. The

pink circles on the map at right

Mount Emmons, southwestern Colorado
(C on the location map at left)

show the study-area locations.

The Mount Emmons study area in southwestern Colorado
consists of a structural duplex, similar to that found in the
Osgood Mountains (above left), but in a mirror image. The
principal bounding faults are NE-trending, left stepping
faults with a left lateral sense of offset. Within this area,
the Redwell Basin provided an interesting focus for
detailed study. At the head of the basin lies an
undeveloped Mo-porphyry deposit, which lies directly below

Patagonia Mountains, southern Arizona
(D on the location map above)
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